Pendidikan Kelas Home Pelajaran Materi

Belajar Soal Matematika Kelas 9 SMP Tentang Sistem Persamaan Linear dan Kuadrat

Materi :

Sistem Persamaan Linear dan Kuadrat

Deskripsi :

Menyelesaikan sistem persamaan yang melibatkan persamaan linier dan kuadrat.

Jenjang Pendidikan : SMP
Mata Pelajaran : Matematika
Kelas : SMP Kelas 9
Waktu :15 Menit

Jul 08, 2025   |   16 views

Salah satu bentuk sistem persamaan linear dan kuadrat adalah ...

A. x + y = 5 dan y = 2x
B. x^2 + y = 5 dan y = 2x + 1
C. x - y = 3 dan x + y = 4
D. 2x + y = 5 dan 3x - y = 4

Pembahasan :
Sistem ini menggabungkan satu persamaan kuadrat (x² + y) dan satu persamaan linear (y = 2x + 1).

Titik potong grafik y = x^2 dan y = 2x adalah ...

A. (0, 0) dan (2, 4)
B. (0, 0) dan (2, 2)
C. (1, 2) dan (-1, -2)
D. (0, 0) dan (1, 1)

Pembahasan :
x² = 2x → x(x-2)=0 → x=0 atau x=2 → y=0 atau y=2.

Jika y = x^2 - 4 dan y = 2x, maka nilai x yang memenuhi adalah ...

A. x = -2 atau x = 4
B. x = -4 atau x = 2
C. x = -2 atau x = 2
D. x = 2 atau x = 4

Pembahasan :
x² - 4 = 2x → x² - 2x -4 = 0 → (x-2)(x+2)=0 → x=2 atau x=-2.

Jumlah titik potong grafik persamaan linear dan kuadrat paling banyak adalah ...

A. 1
B. 2
C. 3
D. Tak terhingga

Pembahasan :
Garis dan parabola dapat berpotongan di maksimal 2 titik.

Jika y = x^2 dan y = -x + 2, maka nilai x yang memenuhi adalah ...

A. -1 dan 2
B. -2 dan 1
C. 0 dan 2
D. 1 dan 1

Pembahasan :
x² = -x + 2 → x² + x - 2 = 0 → (x+2)(x-1)=0 → x=-2, x=1.

Langkah pertama menyelesaikan sistem y = x^2 + 1 dan y = 3x - 5 adalah ...

A. Mencari selisih
B. Mengurangkan persamaan
C. Menyamakan kedua persamaan
D. Mengganti y dengan x

Pembahasan :
Samakan y: x² + 1 = 3x -5.

Hasil penyelesaian dari x² = 4x adalah ...

A. x = 0 atau x = 4
B. x = -4 atau x = 0
C. x = 1 atau x = 4
D. x = -2 atau x = 2

Pembahasan :
x² = 4x → x(x-4)=0 → x=0 atau x=4.

Salah satu metode untuk menyelesaikan sistem persamaan linear dan kuadrat adalah ...

A. Eliminasi
B. Substitusi
C. Grafik
D. Semua benar

Pembahasan :
Semua metode dapat digunakan.

Salah satu titik potong dari y = x² dan y = x + 2 adalah ...

A. (2, 4)
B. (-1, 1)
C. (0, 2)
D. (1, 3)

Pembahasan :
x² = x + 2 → x² - x -2 = 0 → (x-2)(x+1)=0 → x=-1, y=1.

Jika sistem y = x² dan y = 5, maka nilai x yang memenuhi adalah ...

A. x = 0
B. x = 5
C. x = ±5
D. x = ±√5

Pembahasan :
x² = 5 → x = ±√5.